FUNCTIONS WITH SLOWLY-GROWING AREA AND HARMONIC MAJORANTS

BY

SHINJI YAMASHITA

ABSTRACT

Let f be a function holomorphic in $U = \{|z| < 1\}$, and let A(R, f) be the area of $f(U) \cap \{|w| < R\}$, not counting multiplicities. If $A(R, f) = O(R^{\gamma})$ as $R \to \infty$ for a $\gamma, 0 \le \gamma < 2$, then the subharmonic function $\exp|f|^p$ has a harmonic majorant in U for each p, $0 . If <math>0 \le \gamma < 1$ further, then e' is of Hardy class H^p for each p, 0 .

1. Introduction

Let f be a function holomorphic in the disk $U = \{|z| < 1\}$, and let D = f(U)be the image of U by f contained in the complex plane $\mathbb{C} = \{|w| < \infty\}$. Let A(R, f) be the area of the intersection $D \cap U(R)$ of D and the disk U(R) = $\{|w| < R\}, R > 0$, so that $A(R, f) \le \pi R^2$. Then A(R, f) is bounded if and only if D has the finite area. This condition is satisfied, for example, if

$$\iint_U |f'(z)|^2 dx dy < \infty$$

the area of the Riemannian image of U by f covering over D.

A prototype of our present study is the result of L. J. Hansen and W. K. Hayman [3, theorem 1] (see [2]), that if

(1.1)
$$A(R,f) = o(R^2) \quad \text{as } R \to \infty,$$

then f is of Hardy class H^p for all p, 0 . Particularly, if <math>A(R, f) is bounded, then we have the same conclusion which, as Hansen claimed, extends the known fact, $f \in H^2$, resulting from [1, theorem 1]. Thus, one problem is: can we say any more about f with bounded A(R, f)?

For this purpose we consider a condition stronger than (1, 1), namely,

(1.2)
$$A(R,f) = O(R^{\gamma}) \quad \text{as } R \to \infty,$$

Received July 15, 1980

S. YAMASHITA

where γ is a constant with $0 \leq \gamma < 2$. Evidently, f satisfies (1.2) with $\gamma = 0$ if A(R, f) is bounded.

THEOREM 1. Let f be holomorphic in U, and suppose that (1.2) holds for some $\gamma, 0 \leq \gamma < 2$. Then, for each p, $0 , the subharmonic function <math>\exp|f|^p$ admits a harmonic majorant u_p in U, that is, u_p is harmonic and $\exp|f|^p \leq u_p$ in U.

A comparison of the function $\exp x^p \equiv \exp(x^p)$ with x^q $(0 < q < \infty)$ for $x \ge 0$, yields that $f \in H^q$ for all q, $0 < q < \infty$, provided that $\exp|f|^p$ has a harmonic majorant for some p, 0 . In the case where <math>A(R, f) is bounded, $\exp|f|^p$ has a harmonic majorant for all p, 0 . We next consider the restrictive $case where <math>0 \le \gamma < 1$ in

THEOREM 2. Let f be holomorphic in U, and suppose that (1.2) holds for a γ , $0 \leq \gamma < 1$. Then, e^{f} is of Hardy class H^{p} for each p, 0 .

Theorem 2 is sharp in the sense that the conclusion is false if (1.2) holds only for $\gamma \ge 1$. An example is $f(z) = \log[(1+z)/(1-z)]$ for which (1.2) is true with $\gamma \ge 1$, yet e^{t} is not of class H^{1} .

By uniformization, Theorems 1 and 2 have obvious extensions to Riemann surfaces W of hyperbolic type. One of the main interests on W concerns holomorphic f with finite Dirichlet integral

$$\iint_W |f'(z)|^2 \, dx \, dy < \infty.$$

Our version of Theorem 1, for example, says that $\exp|f|^p$ has a harmonic majorant on W for each $p, 0 . For an earlier result that f is of class <math>H^2$ on W, see the paper of M. Parreau [4, p. 179].

In the proofs of Theorems 1 and 2, and in the other cases in the remainder of this paper, we always assume that f is an unbounded holomorphic function in U with f(0) = 0.

2. A test function

Let f be as in the last paragraph in the preceding section and let a(t) be the angular Lebesgue measure of the longest subarc of the intersection $D \cap \{|w| = t\}$ (D = f(U)), so that the arc has the length ta(t), and let the function X(t) be zero if $\{|w| = t\}$ is contained in D, and be one otherwise $(0 < t < \infty)$. It is easy to observe that a(t) is positive and lower-semicontinuous in $(0, \infty)$. A test function we shall consider is

$$F(R,f) = \int_1^R \frac{X(t)}{ta(t)} dt, \qquad R > 1.$$

THEOREM 3. Suppose that

$$(2.1) R^{-q}F(R,f) \to \infty as R \to \infty$$

for a q, $0 < q < \infty$. Then $\exp|f|^p$ has a harmonic majorant for each p, 0 .

Postponing the proof of Theorem 3, we deduce Theorems 1 and 2 from Theorem 3. It suffices to show that (1.2) implies (2.1) for each q, $0 < q < 2 - \gamma$. Let m(R) be the Lebesgue measure of the linear set $L = \{t; 0 < t < R \text{ and } a(t) = 2\pi\}$. Let b(t) be the angular measure of $D \cap \{|w| = t\}$, so that $a(t) \leq b(t)$, $0 < t < \infty$. Then

$$A(R,f) = \int_0^R tb(t)dt \ge \int_0^R ta(t)dt \ge \int_L ta(t)dt$$
$$= 2\pi \int_L tdt \ge 2\pi \int_0^{m(R)} tdt = \pi m(R)^2,$$

because t is monotone on the interval (0, R). Therefore, (1.2) for γ , $0 \le \gamma < 2$, implies that $m(R) = O(R^{\gamma/2})$ as $R \to \infty$. Since $R - m(R) \le \int_0^R X(t) dt$, it follows that, for R sufficiently large,

$$[R-1-m(R)]^2 \leq \left[\int_1^R X(t)dt\right]^2$$
$$\leq \left[\int_1^R ta(t)dt\right] \left[\int_1^R \frac{X(t)}{ta(t)}dt\right] \leq A(R,f)F(R,f),$$

whence (2.1) is valid for q, $0 < q < 2 - \gamma$.

For the proof of Theorem 2, we fix p, 1 . Then, for each <math>q, $0 < q < \infty$, there exists a constant $c_q > 0$ such that $qx \le x^p + c_q$ for $x \ge 0$. Since

$$|e^{f}|^{q} \leq e^{q|f|} \leq (\exp c_{q}) \exp |f|^{p},$$

it follows that $e^f \in H^q$.

For the proof of Theorem 3, we fix an arbitrary p, 0 . Our aim is to show that there exists a harmonic function <math>h in D such that

(2.2)
$$\exp|w|^p \leq h(w)$$
 for all $w \in D$.

If (2.2) is established, then $\exp|f(z)|^p$ has a harmonic majorant h(f(z)) in U.

To prove (2.2) we consider the estimate (3.3) of a harmonic measure in the next section. In Section 4, we construct h with the aid of another harmonic measure.

3. An estimate of a harmonic measure

Let D(R) be the connected component of the intersection $D \cap U(R)$ such that $0 \in D(R)$, R > 0. Let u_R be the harmonic measure [6, p. 111] of $\{|w| = R\} \cap \partial D(R)$ with respect to the domain D(R). Set

(3.1)
$$D^*(R) = U(R/4) \cap D(R)$$
 $(R > 0).$

Then the following estimate of the harmonic function u_R in $D^*(R)$ is known:

(3.2)
$$u_R(w) \leq k \exp\left[-\pi \int_{2|w|}^{R/2} \frac{X(t)}{ta(t)} dt\right],$$

where w lies in $D^*(R)$, and k is a constant independent of w and R > 0. For the proof, see [5, theorem 2]. Those who cannot obtain Tsuji's paper [5] may consult [6, pp. 112-117]; an obvious version of the proof of a somewhat weaker result [6, corollary, p. 116] also proves (3.2).

Now, by (2.1), $\pi F(R/2, f) > R^q$ for all R larger than a constant $R_0 > 0$. It then follows from (3.2) that

$$(3.3) u_R(w) \leq c(w) \exp(-R^q)$$

for all w in $D^*(R)$ of (3.1) with $R > R_0$, where

$$c(w) = k \exp\left[-\pi \int_{2|w|}^{1} \frac{X(t)}{ta(t)} dt\right]$$

is a function of $w \in \mathbf{C}$.

We next show that the function c is bounded in each disk U(R), R > 0. This is apparent for $R \le 1/2$ because $c(w) \le k$ for $2|w| \le 1$. In the case R > 1/2, we consider

$$\int_{1}^{2|w|} \frac{X(t)}{ta(t)} dt \leq \int_{1}^{2R} \frac{X(t)}{ta(t)} dt$$

for $1/2 \le |w| < R$. The function a(t) is positive and lower-semicontinuous in $(0, \infty)$, so that 1/a is bounded in [1, 2R]. Since $X(t)/[ta(t)] \le 1/a(t)$ in [1, 2R], the integrand X(t)/[ta(t)] is bounded in [1, 2R], which shows that c is bounded in the annulus $\{1/2 \le |w| < R\}$, and hence in $U(R) = U(1/2) \cup \{1/2 \le |w| < R\}$.

4. The construction of h

To construct h in (2.2), we let v_R be the harmonic measure of $\{|w| \ge R\} \cap \partial D$ with respect to the domain D (R > 0); note that v_R is harmonic in D, while u_R is harmonic in $D(R) \subset D$. The maximum principle [6, theorem III.28, p. 77] then asserts that $v_R \le u_R$ in D(R), so that (3.3) yields the estimate Vol. 39, 1981

$$(4.1) v_R(w) \leq c(w) \exp(-R^q)$$

for all w in $D^*(R)$ of (3.1) with $R > R_0$.

Set

(4.2)
$$h(w) = p \int_0^\infty v_R(w) R^{p-1} \exp R^p dR + 1$$

for $w \in D$. To show that h is harmonic in D, we consider the Riemann integral

$$h_N(w) = p \int_0^N v(w, R) R^{p-1} \exp R^p dR + 1$$

for each $N = 1, 2, \cdots$ and each $w \in D$, where we set $v(w, R) \equiv v_R(w)$ for typographical reasons. Clearly, h_N is the limit

$$h_N(w) = \lim_{n \to \infty} S_n(w) \qquad (w \in D)$$

of the Riemann sum

$$S_n(w) = p \sum_{j=1}^{2^n} \frac{N}{2^n} v(w, R_j) R_j^{p-1} \exp R_j^p + 1, \qquad R_j = (2j-1)N/2^{n+1}.$$

The sequence $\{S_n\}$ of harmonic functions in D is uniformly bounded in D because $v(w, R_i) \ge 1$, and

$$\lim_{n\to\infty} p \sum_{j=1}^{2^n} \frac{N}{2^n} R_j^{p-1} \exp R_j^p + 1 = \exp N^p.$$

Thus, $\{S_n\}$ is a normal family in D, so that h_N is the limit of a sequence of harmonic functions convergent locally and uniformly in D. Therefore h_N is harmonic in D. Since h_N is non-decreasing as $N \to \infty$, h is harmonic in D by Harnack's theorem if the convergence of $\{h_N\}$ at a point $w \in D$ is established. Fix $w \in D$, and find $R(w) > R_0$ such that $w \in D^*(R)$ for all R > R(w). Then the integral in (4.2) is finite by (4.1), together with

$$R^{p-1}\exp(R^p-R^q)=o(R^{-2}) \qquad \text{as } R\to\infty.$$

Another property of h which will be used is that h is bounded in each domain D(R'), R' > 0. For the proof we choose $R'' > R_0$ such that $D(R') \subset D^*(R)$ for all R > R''. Since c is bounded by a constant c', say, in U(R'), it follows from (4.1) that $v_R(w) \leq c' \exp(-R^q)$ for $w \in D(R')$ and R > R''. Thus,

$$h(w) \leq p \int_0^{R^*} R^{p-1} \exp R^p dR + pc' \int_{R^*}^{\infty} R^{p-1} \exp(R^p - R^q) dR + 1 < \infty$$

for all $w \in D(R')$ because p < q.

S. YAMASHITA

As a final property of h, we assert that there exists a subset E of ∂D of capacity zero such that, for each point $\alpha \in \partial D - E$,

$$(4.3) \qquad \qquad \liminf h(w) \ge \exp |\alpha|^p$$

as $w \to \alpha$ within D. Actually, v_R , as the solution of the Dirichlet problem [6, p. 4] in D with the characteristic function of $\{|w| \ge R\} \cap \partial D$ as the boundary function, admits E such that, as $w \to \alpha \in \partial D - E$,

$$v_{R}(w) \rightarrow \begin{cases} 1 & \text{if } R \leq |\alpha|, \\ 0 & \text{if } |\alpha| < R, \end{cases}$$

so that, by the Fatou lemma,

$$\liminf h(w) \ge \liminf p \int_0^{|\alpha|} v_R(w) R^{p-1} \exp R^p dR + 1$$
$$\ge p \int_0^{|\alpha|} R^{p-1} \exp R^p dR + 1 = \exp |\alpha|^p.$$

We are ready to prove (2.2). Fix $w \in D$, and then choose $R > R_0$ such that $w \in D^*(R)$. Let V_R be the solution of the Dirichlet problem in the bounded domain D(R) with the continuous function $\exp|\alpha|^p$ ($\alpha \in \partial D(R)$) as the boundary value. Then, except for a set of capacity zero on $\partial D(R)$, the superior limit of the bounded harmonic function $V_R(\zeta) - (\exp R^p)u_R(\zeta) - h(\zeta)$ as $\zeta \to \alpha$ within D(R), is non-positive. By the maximum principle again, and by the fact that $\exp|\zeta|^p \leq V_R(\zeta)$ for all $\zeta \in D(R)$, we obtain

$$\exp|\zeta|^p \leq (\exp R^p) u_R(\zeta) + h(\zeta) \qquad \text{for all } \zeta \in D(R).$$

Setting $\zeta = w$, and letting $R \rightarrow \infty$, one observes by (3.3) that (2.2) holds.

REFERENCES

1. H. Alexander, B. A. Taylor and J. L. Ullman, Areas of projections of analytic sets, Invent. Math. 16 (1972), 335-341.

2. L. J. Hansen, The Hardy class of a function with slowly-growing area, Proc. Amer. Math. Soc. 45 (1974), 409-410.

3. L. J. Hansen and W. K. Hayman, On the growth of functions omitting large sets, J. Analyse Math. 30 (1976), 208-214.

4. M. Parreau, Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann, Ann. Inst. Fourier 3 (1952), 103–197.

5. M. Tsuji, A theorem on the majoration of harmonic measure and its applications, Tôhoku Math. J. (2) 3 (1951), 13–23.

6. M. Tsuji, Potential Theory in Modern Function Theory, Maruzen Co., Tokyo, 1959.

DEPARTMENT OF MATHEMATICS

Tokyo Metropolitan University Fukazawa, Setagaya Tokyo 158, Japan