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FUNCTIONS WITH SLOWLY-GROWING 
AREA AND HARMONIC MAJORANTS 

BY 

SHINJI Y A M A S H I T A  

ABSTRACT 

Let f be a function holomorphic in U = {I z [ < 1}, and let A (R, f)  be the area of 
f ( U )  13 {I w I<  R }, not counting multiplicities. If A (R, f)  = O(R ~') as R --+ oo for 
a % 0 _--- 3' < 2, then the subharmonic  function exp If I p has a harmonic majorant  
in U for each p, 0 < p < 2 - 3'. If 0 <= 3" < 1 further, then e ~ is of Hardy class H p 
for each p, 0 < p < ~. 

1. Introduction 

Let f be a function holomorphic in the disk U = {I z I<  1}, and let D = f (U)  

be the image of U by f contained in the complex plane C = {I w I<  oo}. Let 

A (R, f )  be the area of the intersection D fq U(R)  of D and the disk U(R) = 

{I w I < R }, R > 0, so that A (R, f )  =< 7rR 2. Then A (R, f )  is bounded if and only if 

D has the finite area. This condition is satisfied, for example, if 

the area of the Riemannian image of U by f covering over D. 

A prototype of our present study is the result of L. J. Hansen and W. K. 

Hayman [3, theorem 1] (see [2]), that if 

(1.1) A ( R , f )  = o(R 2) as R --> oo, 

then f is of Hardy class H p for all p, 0 < p < 0o. Particularly, if A ( R , f )  is 

bounded, then we have the same conclusion which, as Hansen claimed, extends 

the known fact, f ~ H 2, resulting from [1, theorem 1]. Thus, one problem is: can 

we say any more about f with bounded A (R, f)? 

For this purpose we consider a condition stronger than (1, 1), namely, 

(1.2) A ( R , f )  = O ( R ' )  as R .-~ oo, 
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where y is a constant with 0 _ -y  < 2. Evidently, f satisfies (1.2) with y = 0 if 

A (R, f )  is bounded. 

THEOREM 1. Let[be holomorphic in U, and suppose that (1.2) holds for some 

3,, 0 =  < 3' <2 .  Then, for each p, 0 < p  < 2 -  3,, the subharmonic function expl f l  p 

admits a harmonic majorant up in U, that is, up is harmonic and expl f l  p <= up in 

U. 

A comparison of the function exp x p - exp(x p) with x q (0 < q < oo) for x > 0, 

yields that f C H q for all q, 0 < q < oo, provided that exp Ill p has a harmonic 

majorant for some ~ 0 < p < oo. In the case where A (R, f )  is bounded, exp If I p 

has a harmonic majorant for all p, 0 < p < 2. We next consider the restrictive 

case where 0 -< 3, < 1 in 

THEOREM 2. Let f be holomorphic in U, and suppose that (1.2) holds for a 3,, 

0 ~ 3,.< 1. Then, e t is of Hardy class H p for each p, 0 < p < ~. 

Theorem 2 is sharp in the sense that the conclusion is false if (1.2) holds only 

for 3, => 1. An example is f ( z )  = log[(1 + z)/(1 - z)] for which (1.2) is true with 

3, => 1, yet e t is not of class H ' .  

By uniformization, Theorems 1 and 2 have obvious extensions to Riemann 

surfaces W of hyperbolic type. One of the main interests on W concerns 

holomorphic f with finite Dirichlet integral 

f fw lf'(z)( dxdy < 
Our version of Theorem 1, for example, says that exp l f l  p has a harmonic 

majorant  on W for each p, 0 < p < 2. For an earlier result that f is of class H 2 on 

W, see the paper of M. Parreau [4, p. 179]. 

In the proofs of Theorems 1 and 2, and in the other cases in the remainder of 

this paper, we always assume that f is an unbounded holomorphic function in U 

with f(0) = 0. 

2. A test function 

Let f be as in the last paragraph in the preceding section and let a (t) be the 

angular Lebesgue measure of the longest subarc of the intersection D ('1 

{Iw[ = t} (D = f (U)) ,  so that the arc has the length ta(t) ,  and let the function 

X( t )  be zero if {I w [ = t} is contained in D, and be one otherwise (0 < t < ~). It is 

easy to observe that a (t) is positive and lower-semicontinuous in (0, ~). A test 

function we shall consider is 
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F ( R , f ) = f f  ~ d t ,  R >  1. ( )  

THEOREM 3. Suppose that 

(2.1) R-qF(n,f)--~oo as R ---~oo 

for a q, 0 < q < oo. Then exp If ]P has a harmonic majorant for each p, 0 < p < q. 

Postponing the proof of Theorem 3, we deduce Theorems 1 and 2 from 

Theorem 3. It suffices to show that (1.2) implies (2.1) for each q, 0 < q < 2 -3 ' .  

Let re(R) be the Lebesgue measure of the linear set L = {t; 0 <  t < R and 

a(t) = 2w}. Let b(t) be the angular measure of D A {1 w I=  t}, so that a(t)<= 
b(t), 0 < t  <oo. Then 

a(R,f)= fo~ tb(t)dt >= foR ta(t)dt >= f~ ta(t)dt 

= 2rr tdt >= 27r tdt = 7rm(R) 2, 

because t is monotone on the interval (0, R).  Therefore, (1.2) for 3', 0 -< 3" < 2, 

implies that re(R)= O(R ~/2) as R-oo0. Since R -m(R)<=f~X(t)dt,  it follows 

that, for R sufficiently large, 

[ R -  l - m ( R  )]2<-_ [ fRx( t )d t ]  2 

[ f f  ] [ f f  Xla~t)dt]< A(R ' f )F (R" ) '  <= ta(t)dt = 

whence (2.1) is valid for q, 0 < q < 2 - % 

For the proof of Theorem 2, we fix p, 1 < p < 2 -3 ' .  Then, for each q, 

0 < q < 0% there exists a constant cq > 0 such that qx <= x p + cq for x => 0. Since 

I e '  I q _-__ e q l,l _----- (exp cq ) exp I f I p, 
it follows that e s E H q. 

For the proof of Theorem 3, we fix an arbitrary p, 0 < p < q. Our aim is to 

show that there exists a harmonic tunction h in D such that 

(2.2) exp[ w [ p <-h(w) for all w E D .  

If (2.2) is established, then exp If(z)[~ has a harmonic majorant h (f(z)) in U. 

To prove (2.2) we consider the estimate (3.3) of a harmonic measure in the 

next section. In Section 4, we construct h with the aid of another harmonic 

measure. 
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3. An estimate of a harmonic measure 

Let D(R) be the connected component of the intersection D tq U(R) such 

that OED(R), R > 0 .  Let uR be the harmonic measure [6, p. 111] of 

{I w l = R} tq OD(R) with respect to the domain D(R). Set 

(3.1) D*(R)  = U(R/4)f)D(R) (R >0) .  

Then the following estimate of the harmonic function uR in D*(R)  is known: 

(3.2) 
J21,~p ( ) J 

where w lies in D *(R), and k is a constant independent of w and R > 0. For the 

proof, see [5, theorem 2]. Those who cannot obtain Tsuji's paper [5] may consult 

[6, pp. 112-117]; an obvious version of the proof of a somewhat weaker result 

[6, corollary, p. 116] also proves (3.2). 

Now, by (2.1), ~rF(R/2, f) > R q for all R larger than a constant Ro > 0. It then 

follows from (3.2) that 

(3.3) uR(w) <= c (w) exp( - R q) 

for all w in D*(R) of (3.1) with R > Ro, where 

c(w)=k exp[-Trf2f~wl ~ d t ]  

is a function of w E C. 
We next show that the function c is bounded in each disk U(R), R > 0. This is 

apparent for R _-< 1/2 because c(w) <= k for 21 w I --< 1. In the case R > 1/2, we 

consider 

f2,w, xct) at < (2R x(t) 
ta(t) =J~ ta(t) dt 

for 1/2_-<1w1< R. The function a(t) is positive and lower-semicontinuous in 

(0,o0), so that 1/a is bounded in [1,2R]. Since X(t)/[ta(t)] <= 1/a(t) in [1,2R], 

the integrand X(t)/[ta(t)] is bounded in [1, 2R], which shows that c is bounded 

in the annulus {1/2 ----[w I < R}, and hence in U(R) = U(1/2) t.J {1/2 =<lw I < R}. 

4. The construction of h 

To construct h in (2.2), we let vR be the harmonic measure of {[ w [ _-- R} N 3D 

with respect to the domain D (R > 0), note that vR is harmonic in D, while UR is 

harmonic in D(R)C D. The maximum principle [6, theorem 111.28, p. 77] then 

asserts that vR -< uR in D(R), so that (3.3) yields the estimate 
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(4.1) vR(w) <= c(w)exp( - R q) 

for all w in D*(R) of (3.1) with R > Ro. 
Set 

// (4.2) h(w)=p v~(w)RP-~expRPdR +1 

for w E D. To show that h is harmonic in D, we consider the Riemann integral 

hN(w)=p v(w,R)R"-'expRPdR +1 

for each N = l , 2 , . . .  and each wED,  where we set v(w,R)--vR(w) for 

typographical reasons. Clearly, hN is the limit 

hN(w)=limS.(w) (w ED) 

of the Riemann sum 

2n N p 1 p 

S,(w)=pj~=~v(w, Rj)Rj- e x p R j + l ,  Rj =(2j-1)N/2 "+1. 

The sequence {S.} of harmonic functions in D is uniformly bounded in D 

because v(w, Ri) --> 1, and 
2 n 

l!mp~. N p ~ p _ N~" . j=l~ -~Rj- e x p R j +  1 = exp 

Thus, {S,} is a normal family in D, so that hN is the limit of a sequence of 

harmonic functions convergent locally and uniformly in D. Therefore hN is 

harmonic in D. Since hN is non-decreasing as N--* 0% h is harmonic in D by 

Harnack's theorem if the convergence of {hN} at a point w ~ D is established. 

Fix w E D ,  and find R(w)>Ro such that w ED*(R) for all R > R(w).  Then 

the integral in (4.2) is finite by (4.1), together with 

R~-'exp(RP-Rq)=o(R -2 ) as R ---~ oo. 

Another property of h which will be used is that h is bounded in each domain 

D(R'), R '> O. For the proof we choose R " >  R0 such that D(R')C D*(R) for 

all R > R". Since c is bounded by a constant c', say, in U(R'), it follows from 

(4.1) that vR(w) <= c' exp( - R ~) for w E D(R') and R > R". Thus, 

f0" f;, h(w)<=p RP-~expRPdR +pc' RP-~exp(R p -Rq)dR + l < o o  

for all w E D(R') because p < q. 
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As a final property of h, we assert that there exists a subset E of OD of 

capacity zero such that, for each pont a ~ aD - E, 

(4.3) lim in[ h (w) ~ expl  a I ~ 

as w --~ a within D. Actually, vR, as the solution of the Dirichlet problem [6, p. 4] 

in D with the characteristic function of {Iwl =>R} f )0D as the boundary 

function, admits E such that, as w -* a E OD - E, 

vR (w)_._~ { 10 if R<--_[a[, 

if / a l < R ,  
so that, by the Fatou lemma, 

fl,~l 
lim inf h (w) = lira inf p J0 va (w)R p-lexp R PdR + 1 

(f,,I 

->P J0 RP- lexpRPdR +1 = e x p ] a l  ~. 

We are ready to prove (2.2). Fix w E D, and then choose R > R0 such that 

w E D*(R) .  Let Va be the solution of the Dirichlet problem in the bounded 

domain D ( R )  with the continuous function e x p l a l  ~ ( a E a D ( R ) )  as the 

boundary value. Then, except for a set of capacity zero on aD(R) ,  the superior 

limit of the bounded harmonic function VR (~')-  (exp R P ) u a ( ~ ) -  h(~) as ~" ~ a 

within D(R) ,  is non-positive. By the maximum principle again, and by the fact 

that expl~l P _-< VR(~) for all ff E D(R) ,  we obtain 

expl~'l p <(expRP)UR(~)+h(~)  for all ( E D ( R ) .  

Setting ~" -- w, and letting R ---* 0% one observes by (3.3) that (2.2) holds. 
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