FUNCTIONS WITH SLOWLY-GROWING **AREA AND HARMONIC MAJORANTS**

BY

SHINJI YAMASHITA

ABSTRACT

Let f be a function holomorphic in $U = \{ |z| < 1 \}$, and let $A(R, f)$ be the area of $f(U) \cap \{ |w| < R \}$, not counting multiplicities. If $A(R, f) = O(R^{\gamma})$ as $R \to \infty$ for a γ , $0 \le \gamma < 2$, then the subharmonic function exp $|f|^p$ has a harmonic majorant in U for each p, $0 < p < 2 - \gamma$. If $0 \le \gamma < 1$ further, then e' is of Hardy class H^p for each $p, 0 < p < \infty$.

1. Introduction

Let f be a function holomorphic in the disk $U = \{ |z| < 1 \}$, and let $D = f(U)$ be the image of U by f contained in the complex plane $C = \{ |w| < \infty \}$. Let $A(R, f)$ be the area of the intersection $D \cap U(R)$ of D and the disk $U(R) =$ $\{|w| < R\}$, $R > 0$, so that $A(R, f) \leq \pi R^2$. Then $A(R, f)$ is bounded if and only if D has the finite area. This condition is satisfied, for example, if

$$
\iint_U |f'(z)|^2 dx dy < \infty,
$$

the area of the Riemannian image of U by f covering over D .

A prototype of our present study is the result of L. J. Hansen and W. K. Hayman [3, theorem 1] (see [2]), that if

$$
(1.1) \t\t A(R, f) = o(R2) \t as R \to \infty,
$$

then f is of Hardy class H^p for all p, $0 < p < \infty$. Particularly, if $A(R, f)$ is bounded, then we have the same conclusion which, as Hansen claimed, extends the known fact, $f \in H^2$, resulting from [1, theorem 1]. Thus, one problem is: can we say any more about f with bounded $A(R, f)$?

For this purpose we consider a condition stronger than (1, 1), namely,

$$
(1.2) \t\t A(R, f) = O(R^{\gamma}) \t as R \to \infty,
$$

Received July 15, 1980

260 S. YAMASHITA Israel J. Math.

where γ is a constant with $0 \le \gamma < 2$. Evidently, f satisfies (1.2) with $\gamma = 0$ if $A(R, f)$ is bounded.

THEOREM 1. Let f be holomorphic in U, and suppose that (1.2) holds for some γ , $0 \le \gamma < 2$. Then, for each p, $0 < p < 2-\gamma$, the subharmonic function $\exp(f|^{p})$ *admits a harmonic majorant u_p in U, that is, u_p is harmonic and* $\exp|f|^p \leq u_p$ *in U.*

A comparison of the function $\exp x^p \equiv \exp(x^p)$ with x^q ($0 \le q \le \infty$) for $x \ge 0$, yields that $f \in H^q$ for all q, $0 < q < \infty$, provided that $\exp|f|^p$ has a harmonic majorant for some $p_0 < p < \infty$. In the case where $A(R, f)$ is bounded, $\exp|f|^p$ has a harmonic majorant for all $p, 0 < p < 2$. We next consider the restrictive case where $0 \le \gamma < 1$ in

THEOREM 2. Let f be holomorphic in U, and suppose that (1.2) holds for a γ , $0 \leq \gamma < 1$. Then, e^f is of Hardy class H^p for each p, $0 < p < \infty$.

Theorem 2 is sharp in the sense that the conclusion is false if (1.2) holds only for $\gamma \ge 1$. An example is $f(z) = \log[(1 + z)/(1 - z)]$ for which (1.2) is true with $\gamma \ge 1$, yet e^f is not of class H¹.

By uniformization, Theorems 1 and 2 have obvious extensions to Riemann surfaces W of hyperbolic type. One of the main interests on W concerns holomorphic f with finite Dirichlet integral

$$
\iint_W |f'(z)|^2 dx dy < \infty.
$$

Our version of Theorem 1, for example, says that $exp|f|^p$ has a harmonic majorant on W for each $p, 0 < p < 2$. For an earlier result that f is of class H^2 on W, see the paper of M. Parreau [4, p. 179].

In the proofs of Theorems 1 and 2, and in the other cases in the remainder of this paper, we always assume that f is an unbounded holomorphic function in U with $f(0) = 0$.

2. A test function

Let f be as in the last paragraph in the preceding section and let $a(t)$ be the angular Lebesgue measure of the longest subarc of the intersection $D \cap$ $\{|w| = t\}$ ($D = f(U)$), so that the arc has the length $ta(t)$, and let the function $X(t)$ be zero if $\{|w| = t\}$ is contained in D, and be one otherwise $(0 < t < \infty)$. It is easy to observe that $a(t)$ is positive and lower-semicontinuous in $(0, \infty)$. A test function we shall consider is

$$
F(R, f) = \int_1^R \frac{X(t)}{ta(t)} dt, \qquad R > 1.
$$

THEOREM 3. *Suppose that*

$$
(2.1) \t\t R^{-q}F(R,f) \to \infty \t as R \to \infty
$$

for a q, $0 < q < \infty$ *. Then* $\exp|f|^p$ *has a harmonic majorant for each p,* $0 < p < q$.

Postponing the proof of Theorem 3, we deduce Theorems 1 and 2 from Theorem 3. It suffices to show that (1.2) implies (2.1) for each q , $0 < q < 2 - \gamma$. Let $m(R)$ be the Lebesgue measure of the linear set $L = \{t; 0 < t < R$ and $a(t) = 2\pi$. Let $b(t)$ be the angular measure of $D \cap \{ |w| = t \}$, so that $a(t) \le$ $b(t)$, $0 < t < \infty$. Then

$$
A(R, f) = \int_0^R t b(t) dt \ge \int_0^R t a(t) dt \ge \int_L t a(t) dt
$$

= $2\pi \int_L t dt \ge 2\pi \int_0^{m(R)} t dt = \pi m(R)^2$,

because t is monotone on the interval $(0, R)$. Therefore, (1.2) for γ , $0 \le \gamma < 2$, implies that $m(R) = O(R^{\gamma/2})$ as $R \to \infty$. Since $R - m(R) \leq \int_0^R X(t) dt$, it follows that, for R sufficiently large,

$$
[R-1-m(R)]^2 \leq \left[\int_1^R X(t)dt\right]^2
$$

$$
\leq \left[\int_1^R t a(t)dt\right] \left[\int_1^R \frac{X(t)}{ta(t)}dt\right] \leq A(R,f)F(R,f),
$$

whence (2.1) is valid for q , $0 < q < 2 - \gamma$.

For the proof of Theorem 2, we fix p , $1 < p < 2 - \gamma$. Then, for each q, $0 < q < \infty$, there exists a constant $c_q > 0$ such that $qx \le x^p + c_q$ for $x \ge 0$. Since

$$
|e^f|^q \leq e^{q|f|} \leq (\exp c_q) \exp |f|^p,
$$

it follows that $e^f \in H^q$.

For the proof of Theorem 3, we fix an arbitrary p , $0 < p < q$. Our aim is to show that there exists a harmonic function h in D such that

$$
(2.2) \t\t exp|w|^p \leq h(w) \t\t for all $w \in D$.
$$

If (2.2) is established, then $\exp|f(z)|^p$ has a harmonic majorant $h(f(z))$ in U.

To prove (2.2) we consider the estimate (3.3) of a harmonic measure in the next section. In Section 4, we construct h with the aid of another harmonic measure.

3. An estimate of a harmonic measure

Let $D(R)$ be the connected component of the intersection $D \cap U(R)$ such that $0 \in D(R)$, $R > 0$. Let u_R be the harmonic measure [6, p. 111] of $\{|w| = R\} \cap \partial D(R)$ with respect to the domain $D(R)$. Set

$$
(3.1) \tD^*(R) = U(R/4) \cap D(R) \t(R > 0).
$$

Then the following estimate of the harmonic function u_R in $D^*(R)$ is known:

(3.2)
$$
u_R(w) \leq k \exp \bigg[-\pi \int_{2|w|}^{R/2} \frac{X(t)}{ta(t)} dt \bigg],
$$

where w lies in $D^*(R)$, and k is a constant independent of w and $R > 0$. For the proof, see [5, theorem 2]. Those who cannot obtain Tsuji's paper [5] may consult [6, pp. 112-117]; an obvious version of the proof of a somewhat weaker result $[6, corollary, p. 116]$ also proves (3.2) .

Now, by (2.1), $\pi F(R/2, f) > R^4$ for all R larger than a constant $R_0 > 0$. It then follows from (3.2) that

$$
(3.3) \t uR(w) \leq c(w) \exp(-Rq)
$$

for all w in $D^*(R)$ of (3.1) with $R > R_0$, where

$$
c(w) = k \exp \bigg[-\pi \int_{2|w|}^{1} \frac{X(t)}{ta(t)} dt \bigg]
$$

is a function of $w \in \mathbb{C}$.

We next show that the function c is bounded in each disk $U(R)$, $R > 0$. This is apparent for $R \le 1/2$ because $c(w) \le k$ for $2|w| \le 1$. In the case $R > 1/2$, we consider

$$
\int_1^{2|w|}\frac{X(t)}{ta(t)}dt\leq \int_1^{2R}\frac{X(t)}{ta(t)}dt
$$

for $1/2 \leq |w| < R$. The function $a(t)$ is positive and lower-semicontinuous in $(0, \infty)$, so that $1/a$ is bounded in [1,2R]. Since $X(t)/[ta(t)] \leq 1/a(t)$ in [1,2R], the integrand $X(t)/[ta(t)]$ is bounded in [1, 2R], which shows that c is bounded in the annulus $\{1/2 \leq |w| < R\}$, and hence in $U(R) = U(1/2) \cup \{1/2 \leq |w| < R\}$.

4. The construction of h

To construct h in (2.2), we let v_R be the harmonic measure of $\{ |w| \ge R \} \cap \partial D$ with respect to the domain D ($R > 0$); note that v_R is harmonic in D, while u_R is harmonic in $D(R) \subset D$. The maximum principle [6, theorem III.28, p. 77] then asserts that $v_R \leq u_R$ in $D(R)$, so that (3.3) yields the estimate

$$
(4.1) \t v_R(w) \leq c(w) \exp(-R^q)
$$

for all w in $D^*(R)$ of (3.1) with $R > R_0$.

Set

(4.2)
$$
h(w) = p \int_0^{\infty} v_R(w) R^{p-1} \exp R^p dR + 1
$$

for $w \in D$. To show that h is harmonic in D, we consider the Riemann integral

$$
h_N(w) = p \int_0^N v(w, R) R^{p-1} \exp R^p dR + 1
$$

for each $N=1,2,\cdots$ and each $w \in D$, where we set $v(w, R) \equiv v_R(w)$ for typographical reasons. Clearly, h_N is the limit

$$
h_N(w) = \lim_{n \to \infty} S_n(w) \qquad (w \in D)
$$

of the Riemann sum

$$
S_n(w) = p \sum_{j=1}^{2^n} \frac{N}{2^n} v(w, R_j) R_j^{p-1} \exp R_j^p + 1, \qquad R_j = (2j-1)N/2^{n+1}.
$$

The sequence $\{S_n\}$ of harmonic functions in D is uniformly bounded in D because $v(w, R_i) \ge 1$, and

$$
\lim_{n\to\infty}p\sum_{j=1}^{2^n}\frac{N}{2^n}R_j^{p-1}\exp R_j^p+1=\exp N^p.
$$

Thus, $\{S_n\}$ is a normal family in D, so that h_N is the limit of a sequence of harmonic functions convergent locally and uniformly in D. Therefore h_N is harmonic in D. Since h_N is non-decreasing as $N \rightarrow \infty$, h is harmonic in D by Harnack's theorem if the convergence of $\{h_N\}$ at a point $w \in D$ is established. Fix $w \in D$, and find $R(w) > R_0$ such that $w \in D^*(R)$ for all $R > R(w)$. Then the integral in (4.2) is finite by (4.1), together with

$$
R^{p-1}\exp(R^p - R^q) = o(R^{-2}) \quad \text{as } R \to \infty.
$$

Another property of h which will be used is that h is bounded in each domain $D(R')$, $R' > 0$. For the proof we choose $R'' > R_0$ such that $D(R') \subset D^*(R)$ for all $R > R''$. Since c is bounded by a constant c', say, in $U(R')$, it follows from (4.1) that $v_R(w) \le c' \exp(-R^q)$ for $w \in D(R')$ and $R > R''$. Thus,

$$
h(w) \leq p \int_0^{R^*} R^{p-1} \exp R^p dR + pc' \int_{R^*}^{\infty} R^{p-1} \exp(R^p - R^q) dR + 1 < \infty
$$

for all $w \in D(R')$ because $p < q$.

264 S. YAMASHITA Israel J. Math.

As a final property of h , we assert that there exists a subset E of ∂D of capacity zero such that, for each pont $\alpha \in \partial D - E$,

(4.3) lim in[h (w) ~ expl a I ~

as $w \rightarrow \alpha$ within D. Actually, v_R , as the solution of the Dirichlet problem [6, p. 4] in D with the characteristic function of $\{|w| \ge R\} \cap \partial D$ as the boundary function, admits E such that, as $w \rightarrow \alpha \in \partial D - E$,

$$
v_R(w) \rightarrow \begin{cases} 1 & \text{if } R \leq |\alpha|, \\ 0 & \text{if } |\alpha| < R, \end{cases}
$$

so that, by the Fatou lemma,

$$
\liminf h(w) \geqq \liminf p \int_0^{|a|} v_R(w) R^{p-1} \exp R^p dR + 1
$$

$$
\geqq p \int_0^{|a|} R^{p-1} \exp R^p dR + 1 = \exp |\alpha|^p.
$$

We are ready to prove (2.2). Fix $w \in D$, and then choose $R > R_0$ such that $w \in D^*(R)$. Let V_R be the solution of the Dirichlet problem in the bounded domain $D(R)$ with the continuous function $exp|\alpha|^p$ ($\alpha \in \partial D(R)$) as the boundary value. Then, except for a set of capacity zero on $\partial D(R)$, the superior limit of the bounded harmonic function $V_R(\zeta) - (\exp R^p)u_R(\zeta) - h(\zeta)$ as $\zeta \to \alpha$ within $D(R)$, is non-positive. By the maximum principle again, and by the fact that $\exp|\zeta|^p \leq V_R(\zeta)$ for all $\zeta \in D(R)$, we obtain

$$
\exp|\zeta|^p \leq (\exp R^p)u_R(\zeta) + h(\zeta) \quad \text{for all } \zeta \in D(R).
$$

Setting $\zeta = w$, and letting $R \rightarrow \infty$, one observes by (3.3) that (2.2) holds.

REFERENCES

1. H. Alexander, B. A. Taylor and J. L. Uiiman, *Areas of projections of analytic sets,* Invent. Math. 16 (1972), 335-341.

2. L.J. Hansen, The *Hardy class of a function with slowly-growing area,* Proc. Amer. Math. Soc. **45** (1974), 409–410.

3. L. J. Hansen and W. K. Hayman, *On the growth of functions omitting large sets,* J. Analyse Math. 30 (1976), 208-214.

4. M. Parreau, *Sur les moyennes des [onctions harmoniques et analytiques et la classification des surfaces de Riemann,* Ann. Inst. Fourier 3 (1952), 103--197.

5. M. Tsuji, *A theorem on the majoration of harmonic measure and its applications,* T6hoku Math. J. (2) 3 (1951), 13-23.

6. M. Tsuji, *Potential Theory in Modern Function Theory,* Maruzen Co., Tokyo, 1959.

DEPARTMENT OF MATHEMATICS

TOKYO METROPOLITAN UNIVERSITY FUKAZAWA, 8ETAGAYA TOKYO 158, JAPAN