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FUNCTIONS WITH SLOWLY-GROWING
AREA AND HARMONIC MAJORANTS

BY
SHINJI YAMASHITA

ABSTRACT

Let f be a function holomorphic in U ={|z|< 1}, and let A(R, f) be the area of
f(UYN{]w| < R}, not counting multiplicities. If A(R, f)= O(R”) as R = for
a vy, 0=y <2, then the subharmonic function exp| f|* has a harmonic majorant
in U foreach p, 0 <p <2—v. If 0= y <1 further, then e’ is of Hardy class H”
for each p, 0<p <.

1. Introduction

Let f be a function holomorphic in the disk U ={|z| <1}, and let D = f(U)
be the image of U by f contained in the complex plane C={|w|<o}. Let
A(R, f) be the area of the intersection D N U(R) of D and the disk U(R) =
{{wl< R}, R >0, so that A(R, f) = wR> Then A(R, f) is bounded if and only if
D has the finite area. This condition is satisfied, for example, if

[[ 1@y <=,

the area of the Riemannian image of U by f covering over D.
A prototype of our present study is the result of L. J. Hansen and W. K.
Hayman [3, theorem 1] (see [2]), that if

(L.1) A(R,f)=0(R*) asR—,

then f is of Hardy class H” for all p, 0 <p <. Particularly, if A(R,f) is
bounded, then we have the same conclusion which, as Hansen claimed, extends
the known fact, f € H?, resulting from [1, theorem 1]. Thus, one problem is: can
we say any more about f with bounded A (R, f)?

For this purpose we consider a condition stronger than (1, 1), namely,
1.2) AR f)=0O(R") as R —>x,
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where v is a constant with 0=y <2. Evidently, f satisfies (1.2) with y =0 if
A(R, f) is bounded.

THEOREM 1. Let f be holomorphic in U, and suppose that (1.2) holds for some
v, 0=y <2. Then, for each p, 0<p <2 — v, the subharmonic function exp|f|
admits a harmonic majorant u, in U, that is, u, is harmonic and exp|f[f = u, in
U.

A comparison of the function exp x” =exp(x”) with x* (0 <gq <) for x =0,
yields that f € H? for all g, 0 < q <<, provided that exp|f|° has a harmonic
majorant for some p, 0 < p <, In the case where A(R, f) is bounded, exp|f|’
has a harmonic majorant for all p, 0<p <2. We next consider the restrictive
case where 0=y <1 in

THEOREM 2. Let f be holomorphic in U, and suppose that (1.2) holds for a v,
0= y:<1. Then, ¢’ is of Hardy class H” for each p, 0<p <<,

Theorem 2 is sharp in the sense that the conclusion is false if (1.2) holds only
for y = 1. An example is f(z) =log[(1+ z)/(1 — 2z)] for which (1.2) is true with
vy =1, yet e’ is not of class H'.

By uniformization, Theorems 1 and 2 have obvious extensions to Riemann
surfaces W of hyperbolic type. One of the main interests on W concerns
holomorphic f with finite Dirichlet integral

[[ 17@or dxay <o

Our version of Theorem 1, for example, says that exp|f|° has a harmonic
majorant on W for each p, 0 < p <2. For an earlier result that f is of class H* on
W, see the paper of M. Parreau [4, p. 179].

In the proofs of Theorems 1 and 2, and in the other cases in the remainder of
this paper, we always assume that f is an unbounded holomorphic function in U
with f(0) =0.

2. A test function

Let f be as in the last paragraph in the preceding section and let a(t) be the
angular Lebesgue measure of the longest subarc of the intersection DN
{|w| =1t} (D = f(U)), so that the arc has the length ta(t), and let the function
X(t)be zero if {| w | = t} is contained in D, and be one otherwise (0 < t < ). It is
easy to observe that a(t) is positive and lower-semicontinuous in (0,%). A test
function we shall consider is
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F(R,f)=fl %%d:, R>1.

THEOREM 3. Suppose that
(2.1) R7F(R, f)— > asR —
foragq,0< q <x. Then exp|f|° has a harmonic majorant for each p,0<p < gq.

Postponing the proof of Theorem 3, we deduce Theorems 1 and 2 from
Theorem 3. It suffices to show that (1.2) implies (2.1) for each q, 0<q <2 — .
Let m(R) be the Lebesgue measure of the linear set L ={t; 0<t <R and
a(t)=2w}. Let b(¢) be the angular measure of D N{|w|=1t}, so that a(t)=
b(t), 0<t <, Then

A(R,f)=J;R tb(t)dtzf ta(t)dtsz ta(t)dt

m(R)

= 27rf tdt = ZWI tdt = mm(RY’,
L 0

because ¢ is monotone on the interval (0, R). Therefore, (1.2) for y, 0=y <2,
implies that m(R) = O(R"”) as R —»> . Since R — m(R) = [ X(#)dt, it follows
that, for R sufficiently large,

[R-1-m(R)f= UIRX(t)dt]2

= UR ta(t)dt] UR %(ai(% dt] = A(R,f)F(R,f),

whence (2.1) is valid for q, 0<q<2-—.
For the proof of Theorem 2, we fix p, 1<p <2-+. Then, for each g,
0 < g < =, there exists a constant ¢, > 0 such that gx = x” + ¢, for x Z 0. Since

|ef " = e?" = (expc,)exp|fF
it follows that e/ € HA.
For the proof of Theorem 3, we fix an arbitrary p, 0 <p <gq. Our aim is to
show that there exists a harmonic function h in D such that

2.2 exp|wlffF =h(w) forallw €D.

If (2.2) is established, then exp| f(z)|” has a harmonic majorant h(f(z))in U.

To prove (2.2) we consider the estimate (3.3) of a harmonic measure in the
next section. In Section 4, we construct h with the aid of another harmonic
measure.
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3. An estimate of a harmonic measure

Let D(R) be the connected component of the intersection D N U(R) such
that 0€ D(R), R>0. Let uz be the harmonic measure [6, p. 111] of
{{w|= R} N aD(R) with respect to the domain D(R). Set

3.1) D*R)=U(R/4)ND(R) (R>0).

Then the following estimate of the harmonic function uz in D*(R) is known:

(32) uR(w)ékexp[—wlezmdt],

2wl ta(t)

where w lies in D*(R), and k is a constant independent of w and R > 0. For the
proof, see [5, theorem 2]. Those who cannot obtain Tsuji’s paper [5] may consult
[6, pp. 112-117]; an obvious version of the proof of a somewhat weaker result
[6. corollary, p. 116] also proves (3.2).

Now, by (2.1), wF(R/2, f) > R“ for all R larger than a constant R, > 0. It then
follows from (3.2) that
(3.3) ur(w)=c(w)exp(— R?)

for all w in D*(R) of (3.1) with R > R,, where
1
_ _ X() ]
c(w) kexp[ T » ta(t)dt
is a function of w € C.

We next show that the function c is bounded in each disk U(R), R > 0. This is
apparent for R =1/2 because c(w)=k for 2|w|=1. In the case R >1/2, we
consider

2lw] 2R
f X 4 < [T XA
1 ta(t) y ta(t)
for 1/2=|w|<R. The function a(t) is positive and lower-semicontinuous in
(0,), so that 1/a is bounded in [1,2R]. Since X(t)/[ta(t)] =1/a(t) in [1,2R],
the integrand X (¢)/[ta(t)] is bounded in [1,2R], which shows that ¢ is bounded
in the annulus {1/2 =|w|< R}, and hence in U(R) = U(12) U{1/2=|w|<R}.

4. The construction of h

To construct h in (2.2), we let vr be the harmonic measure of {|w|Z R} N éD
with respect to the domain D (R > 0); note that v is harmonic in D, while uz is
harmonic in D(R) C D. The maximum principle [6, theorem II1.28, p. 77] then
asserts that vg = ur in D(R), so that (3.3) yields the estimate
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4.1) vr(w)=c(w)exp(— R?)
for all w in D*(R) of (3.1) with R > R,.
Set
4.2 h(w)=pf vr(w)RP'expRPdR + 1
0

for w € D. To show that h is harmonic in D, we consider the Riemann integral
N
hn(w) = p[ v(w, R)R?'expR"dR +1
[

for each N=1,2,--- and each w € D, where we set v(w, R)=uvg(w) for
typographical reasons. Clearly, hy is the limit
hn(w)=1lim S, (w) (weD)

n—oce

of the Riemann sum
2n N
S.(w)=p, So(w, R)R!"expRI+1, R =(Qj —DN/2"".
i=1

The sequence {S.} of harmonic functions in D is uniformly bounded in D
because v(w, R;)=1, and

on
limp >, Ry expRy+1=expN-.
p:

Thus, {S.} is a normal family in D, so that hy is the limit of a sequence of
harmonic functions convergent locally and uniformly in D. Therefore hy is
harmonic in D. Since hx is non-decreasing as N-—o, h is harmonic in D by
Harnack’s theorem if the convergence of {hn} at a point w € D is established.
Fix w € D, and find R(w)> R, such that w € D*(R) for all R > R(w). Then
the integral in (4.2) is finite by (4.1), together with

R 'exp(R* —R*)=0(R™? asR-—x,

Another property of h which will be used is that h is bounded in each domain
D(R"), R'>0. For the proof we choose R" > R, such that D(R") C D*(R) for
all R > R". Since ¢ is bounded by a constant c¢’, say, in U(R’), it follows from
(4.1) that vr(w)=c'exp(— R?) for w € D(R’) and R > R". Thus,

R” ©
h(w)épf R?'exp R?dR +pc’f R 'exp(R* —R*)dR +1<®
0 R"

for all w € D(R') because p <gq.
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As a final property of h, we assert that there exists a subset E of 4D of
capacity zero such that, for each pont « € 0D — E,

4.3) liminf h(w) Z exp|a |’
as w — a within D. Actually, vg, as the solution of the Dirichlet problem [6, p. 4]

in D with the characteristic function of {{w|=Z R}N 3D as the boundary
function, admits E such that, as w = a € 0D — E,

1 if R=|al,
vr(w)—
0 if |a|<R,
so that, by the Fatou lemma,

la]
liminfh(w)zliminfpf vr(W)R?'expR?dR +1
0
lal
zpf R°'expR?dR +1=exp|al.
0

We are ready to prove (2.2). Fix w € D, and then choose R > R, such that
w € D*(R). Let Vi be the solution of the Dirichlet problem in the bounded
domain D(R) with the continuous function exp|a|’ (a € dD(R)) as the
boundary value. Then, except for a set of capacity zero on D (R), the superior
limit of the bounded harmonic function Vz({)— (exp R )ux({)—h({)as { —>a
within D(R), is non-positive. By the maximum principle again, and by the fact
that exp|{|F = Vk({) for all { € D(R), we obtain

exp|{ P =(expR")ur({)+h({)  for all { € D(R).
Setting { = w, and letting R — %, one observes by (3.3) that (2.2) holds.
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